Exploring Data

1.2 Describing Distributions with Numbers YMS3e

AP Stats at LSHS

Mr. Molesky

Sample Data

- Consider the following test scores for a small class:

75	76	82	93	45	68	74	82	91	98

Plot the data and describe the SOCS:

Shape?
Outliers?
Center?
Spread?

What number best describes the "center"?
What number best describes the "spread'?

Measures of Center

- Numerical descriptions of distributions begin with a measure of its "center".
- If you could summarize the data with one number, what would it be?

Mean: \bar{X} The "average" value of a dataset.

$$
\bar{x}=\frac{x_{1}+x_{2}+\ldots+x_{n}}{}
$$

n

$$
\bar{x}=\underline{\sum x_{i}}
$$

n

Median: Q2 or M The "middle" value of a dataset.
Arrange observations in order min to max
Locate the middle observation, average if needed.

Mean vs. Median

- The mean and the median are the most common measures of center.
- If a distribution is perfectly symmetric, the mean and the median are the same.
- The mean is not resistant to outliers.
- You must decide which number is the most appropriate description of the center...

MeanMedian Applet

Measures of Spread

- Variability is the key to Statistics. Without variability, there would be no need for the subject.
- When describing data, never rely on center alone.
- Measures of Spread:
- Range - \{rarely used...why?\}
- Quartiles - InterQuartile Range \{IQR=Q3-Q1\}
- Variance and Standard Deviation \{var and $\mathrm{s} x_{\mathrm{x}}$ \}
- Like Measures of Center, you must choose the most appropriate measure of spread.

Quartiles

- Quartiles Q1 and Q3 represent the 25th and 75th percentiles.
[] To find them, order data from min to max.
[] Determine the median - average if necessary.
(] The first quartile is the middle of the 'bottom half'.
[] The third quartile is the middle of the 'top half'.

19	22	23	23	2		26	26	27	28	29	30	31	32	32
			1=23				med			Q3	${ }_{\text {¢ }}^{\text {¢ }}$			

45	68	74	75	76	82	82	91	93	98	
$\begin{array}{lc} \uparrow & \uparrow \\ \text { Q1 } & \text { med }=79 \end{array}$										

5-Number Summary, Boxplots

- The 5 Number Summary provides a reasonably complete description of the center and spread of distribution

\section*{| MIN | Q1 | MED | Q3 | MAX |
| :--- | :--- | :--- | :--- | :--- |}

- We can visualize the 5 Number Summary with a boxplot.

Determining Outliers "1.5 • IQR Rule"

- InterQuartile Range "IQR": Distance between Q1 and Q3. Resistant measure of spread...only measures middle 50% of data.
- IQR = Q3-Q1 \{width of the "box" in a boxplot\}
- 1.5 IQR Rule: If an observation falls more than 1.5 IQRs above Q3 or below Q1, it is an outlier.

Why 1.5? According to John Tukey, 1 IQR seemed like too little and 2 IQRs seemed like too much...

$1.5 \cdot$ IQR Rule

- To determine outliers:
[] Find 5 Number Summary
(]) Determine IQR
[] Multiply $1.5 x I Q R$
(V) Set up "fences" Q1-(1.5IQR) and Q3+(1.5IQR)
(]) Observations "outside" the fences are outliers.

Outlier Example

fence: 45.72+39.99
$=-20.93$
 Spending (\$)

Standard Deviation

- Another common measure of spread is the Standard Deviation: a measure of the "average" deviation of all observations from the mean.
- To calculate Standard Deviation:
[] Calculate the mean.
(V) Determine each observation's deviation (x - xbar).
[- "Average" the squared-deviations by dividing the total squared deviation by ($\mathbf{n} \mathbf{- 1}$).
[] This quantity is the Variance.
(-) Square root the result to determine the Standard Deviation.

Standard Deviation

- Variance: $\quad \operatorname{var}=\frac{\left(x_{1}-\bar{x}\right)^{2}+\left(x_{2}-\bar{x}\right)^{2}+\ldots+\left(x_{n}-\bar{x}\right)^{2}}{n-1}$
- Standard Deviation: $s_{x}=\sqrt{\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n-1}}$
- Example 1.16 (p.85): Metabolic Rates

1792	1666	1362	1614	1460	1867	1439

Metabolic Rates: mean=1600

x	$(\mathrm{x}-\overline{\mathrm{x})}$	$(\mathrm{x}-\overline{\mathrm{x}})^{\mathbf{2}}$
1792	192	36864
1666	66	4356
1362	-238	56644
1614	14	196
1460	-140	19600
1867	267	71289
1439	-161	25921
Totals:	0	214870

Total Squared Deviation	214870
Variance	var=214870/6 var=35811.66
Standard Deviation	$\mathrm{s}=\sqrt{ } 35811.66$ $\mathrm{~s}=189.24 \mathrm{cal}$

What does this value, s, mean?

Linear Transformations

- Variables can be measured in different units (feet vs meters, pounds vs kilograms, etc)
- When converting units, the measures of center and spread will change.
- Linear Transformations ($\mathbf{x}_{\text {new }}=\mathbf{a + b x}$) do not change the shape of a distribution.
- Multiplying each observation by b multiplies both the measure of center and spread by b.
(- Adding a to each observation adds a to the measure of center, but does not affect spread.

Data Analysis Toolbox

To answer a statistical question of interest:

- Data: Organize and Examine
- Who are the individuals described?
- What are the variables?
- Why were the data gathered?
- When,Where,How,By Whom were data gathered?
- Graph: Construct an appropriate graphical display
- Describe SOCS
- Numerical Summary: Calculate appropriate center and spread (mean and s or 5 number summary)
- Interpretation: Answer question in context!

Chapter l Summary

- Data Analysis is the art of describing data in context using graphs and numerical summaries. The purpose is to describe the most important features of a dataset.

```
Plot your data
Dotplot, Stemplot, Histogram
```

```
Interpret what you see
Shape, Center, Spread, Outliers
```


Choose numerical summary \bar{x} and 6 , Five-Number Summary

