Exploring Data

1.2 Describing Distributions with Numbers YMS3e

> AP Stats at LSHS Mr. Molesky

Sample Data

Consider the following test scores for a small class:

75	76	82	93	45	68	74	82	91	98
----	----	----	----	----	----	----	----	----	----

Plot the data and describe the SOCS:

What number best describes the "center"? What number best describes the "spread'?

Measures of Center

- Numerical descriptions of distributions begin with a measure of its "center".
 - If you could summarize the data with one number, what would it be?

Mean: X The "average" value of a dataset.

$$\overline{x} = \frac{x_1 + x_2 + \dots + x_n}{n} \qquad \overline{x} = \frac{\sum x_i}{n}$$

Median: Q2 or M The "middle" value of a dataset.

Arrange observations in order min to max Locate the middle observation, average if needed.

Mean vs. Median

- The *mean* and the *median* are the most common measures of center.
 - If a distribution is perfectly symmetric, the *mean* and the *median* are the same.
 - The *mean* is **not resistant to outliers**.
- *You* must decide which number is the most appropriate description of the center...

MeanMedian Applet

Measures of Spread

- Variability is the key to Statistics. Without variability, there would be no need for the subject.
 - When describing data, never rely on center alone.
- <u>Measures of Spread</u>:
 - Range {rarely used...why?}
 - Quartiles InterQuartile Range {IQR=Q3-Q1}
 - Variance and Standard Deviation {var and s_x}
- Like Measures of Center, *you* must choose the most appropriate measure of spread.

Quartiles

- **Quartiles Q1 and Q3** represent the 25th and 75th percentiles.
 - **To find them**, order data from min to max.
 - **J** Determine the **median** average if necessary.
 - **The first quartile** is the middle of the 'bottom half'.
 - **The third quartile** is the middle of the 'top half'.

med=79

5-Number Summary, Boxplots

• The **5 Number Summary** provides a reasonably complete description of the center and spread of distribution

 We can visualize the 5 Number Summary with a boxplot.

Determining Outliers "1.5 • IQR Rule"

- InterQuartile Range "IQR": Distance between Q1 and Q3. Resistant measure of spread...only measures middle 50% of data.
 - IQR = Q3 Q1 {width of the "box" in a boxplot}
- **1.5 IQR Rule:** If an observation falls more than 1.5 IQRs above Q3 or below Q1, it is an **outlier**.

Why 1.5? According to John Tukey, 1 IQR seemed like too little and 2 IQRs seemed like too much...

1.5 • IQR Rule

- To determine outliers:
 - **Find 5** Number Summary
 - **I** Determine IQR
 - **Multiply 1.5xIQR**
 - **Set up** "fences" Q1-(1.5IQR) and Q3+(1.5IQR)
 - Observations "outside" the fences are outliers.

Outlier Example

Standard Deviation

- Another common measure of spread is the Standard Deviation: a measure of the *"average"* deviation of all observations from the mean.
- To calculate Standard Deviation:
 - Calculate the **mean**.
 - Determine each observation's deviation (x xbar).
 - "Average" the *squared*-deviations by dividing the total *squared* deviation by (n-1).
 - **I** This quantity is the **Variance**.
 - Square root the result to determine the **Standard Deviation**.

Standard Deviation $(r, \bar{r})^{2} + (r, \bar{r})^{2} + (r, \bar{r})^{2}$

• Variance: $\operatorname{var} = \frac{(x_1 - \overline{x})^2 + (x_2 - \overline{x})^2 + \dots + (x_n - \overline{x})^2}{n - 1}$

• Standard Deviation:

$$S_x = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n - 1}}$$

• Example 1.16 (p.85): Metabolic Rates

	1792	1666	1362	1614	1867	1439	
	<i>x</i> = 1439		viation = -161	x = 1600	deviation = 192		
1300	• 1400	••	1500	1600	•	1800	• 1900
1300	1400		1500 M	1600 etabolic rate	1700	1800	1:

Standard Deviation

1792	1666	136	2	1614	14	460	186	7	1439
	etabol	mea	an=1	.600					
x	(x	$(x - \overline{x})$		$(x - \overline{x})^2$	Т	otal Sc	uared		
1792	1	192		36864		Deviation		214870	
1666		66		4356		Variance		var=214870/6 var=35811.66	
1362	-:	-238		56644					
1614		14		196					
1460	-	-140		19600		Standard		s=√35811.66	
1867	2	267		71289	1	Deviation		s=189.24 cal	
1439	_	161		25921	-				
Totals:		0		214870	What does this			s this	

Linear Transformations

- Variables can be measured in different units (feet vs meters, pounds vs kilograms, etc)
- When converting units, the measures of center and spread will change.
- Linear Transformations (x_{new}=a+bx) do not change the shape of a distribution.
 - Multiplying each observation by *b* multiplies both the measure of center and spread by *b*.
 - Adding *a* to each observation adds *a* to the measure of center, but does not affect spread.

Data Analysis Toolbox

To answer a statistical question of interest:

- **Data:** Organize and Examine
 - Who are the individuals described?
 - What are the variables?
 - Why were the data gathered?
 - When, Where, How, By Whom were data gathered?
- **Graph**: Construct an appropriate graphical display
 - Describe SOCS
- Numerical Summary: Calculate appropriate center and spread (mean and s or 5 number summary)
- Interpretation: Answer question in context!

Chapter 1 Summary

• Data Analysis is the art of describing data in context using graphs and numerical summaries. The purpose is to describe the most important features of a dataset.

