1. This table shows the relationship between n, the number of consecutive hits made in a video game, and number of points scored.

Points Scored in Video Game

Number of Consecutive Hits	Points Scored
1	2
2	5
3	10
4	17
\ldots	

Which function best represents this relationship?
A. $f(n)=n^{2}+n$, for $n=1,2,3, \ldots$
B. $f(n)=n^{2}+1$, for $n=1,2,3, \ldots$
C. $f(n)=4 n+1$, for $n=1,2,3, \ldots$
D. $f(n)=2 n+1$, for $n=1,2,3, \ldots$
2. A right triangle and its dimensions are shown in this diagram.

What is the area of the triangle in simplified form?
A. $3 \sqrt{20} \mathrm{~cm}^{2}$
B. $6 \sqrt{10} \mathrm{~cm}^{2}$
C. $10 \sqrt{6} \mathrm{~cm}^{2}$
D. $20 \sqrt{3} \mathrm{~cm}^{2}$
3. Two bicyclists leave a shop at the same time. One travels north and the other travels east. Both bicyclists average 15 miles per hour.

How far apart, in miles, will they be after \boldsymbol{x} hours?
A. $30 x$
B. $2 x \sqrt{15}$
C. $15 x$
D. $15 x \sqrt{2}$

Math I EOCT 2 Review (math1spring2)

4. Right triangle ${ }^{\text {RST }}$ and its dimensions are shown in this diagram.

What is the perimeter of triangle $R S T$?
A. 10
B. $10 \sqrt{2}$
C. $12 \sqrt{2}$
D. $25 \sqrt{2}$

Math I EOCT 2 Review (math1spring2)

5. An isosceles trapezoid and some of its dimensions are shown in this diagram.

What is the perimeter, in units, of the trapezoid?
A. $18+10 \sqrt{2}$
B. 28
C. $18+4 \sqrt{5}$
D. 43

6 . An 8 -inch by 10 -inch photograph is being reduced proportionally. The 10 -inch side is reduced by x inches. What is the CHANGE in the area in terms of x ?
A. $\left(-0.8 x^{2}+16 x\right)$ sq. in.
B. $\left(-0.8 x^{2}-16 x\right)$ sq. in.
C. $\left(0.8 x^{2}+16 x\right)$ sq. in.
D. $\left(0.8 x^{2}-16 x\right)$ sq. in.
7. A box is in the shape of a rectangular prism.

Two faces each have an area of $2 x^{2}+6 x$ square units. Two faces each have an area of $2 x^{2}+8 x$ square units. Two faces each have an area of $x^{2}+7 x+12$ square units. What is the surface area, in square units, of the box?
A. $10 x^{2}+21 x+12$
B. $10 x^{2}+42 x+24$
C. $10 x^{4}+21 x^{2}+24$
D. $10 x^{6}+42 x^{3}+24$
8. A picture with a frame and its dimensions are shown in this diagram.

What is the area, in square inches, of the frame?
A. $4 x+4$
B. $6 x+2$
C. $6 x+4$
D. $8 x+4$
9. The area, in square units, of a rectangle is represented by this polynomial.

$$
6 x^{2}+13 x+6
$$

One dimension is $2 x+3$ units. What is the other dimension, in units, of the rectangle?
A. $3 x+2$
B. $4 x+3$
C. $6 x^{2}+15 x+9$
D. $6 x^{2}+11 x+3$
10. The edge of a cube is 10 inches. Each edge of the cube is shortened by ${ }^{\boldsymbol{d}}$ inches to make a smaller cube. What is the volume of the smaller cube in terms of d ?
A. $\left(100-d^{3}\right)$ cubic inches
B. $\left(1000-d^{3}\right)$ cubic inches
C. $\left(1000-300 d+30 d^{2}-d^{3}\right)$ cubic inches
D. $\left(1000-300 d+10 d^{2}+d^{3}\right)$ cubic inches
11. A shipping company uses cube-shaped boxes with edges that are e centimeters long. The inside of each face of the box is padded with foam that is 2 centimeters thick. What is the usable volume of the inside of the box?
A. $e^{3}-4 e^{2}-16 e+64 \mathrm{~cm}^{3}$
B. $e^{3}-12 e^{2}+12 e-64 \mathrm{~cm}^{3}$
C. $e^{3}-12 e^{2}+48 e-64 \mathrm{~cm}^{3}$
D. $e^{3}+12 e^{2}+12 e-64 \mathrm{~cm}^{3}$
12. Use this expression to answer the question.

$$
\frac{x^{2}-16}{4 x}, \frac{x+4}{x-4}
$$

Which of the following is equivalent to the expression?
A. $\frac{4 x}{(x-4)^{2}}$
B. $\frac{(x+4)^{2}}{4 x}$
C. $\frac{(x-4)^{2}}{4 x}$
D. $\frac{4 x}{(x+4)^{2}}$
13. One painter can paint a house with a sprayer in \boldsymbol{p} hours. It takes a painter twice as long to paint the house with a brush.

Which expression represents the fraction of the house that can be painted in one hour by two painters, one using a brush and the other using a sprayer?
A. $\frac{2}{3 p}$
B. $\frac{3}{2 p}$
C. $\frac{3}{p}$
D. $\frac{2}{p}$
14. A chef cuts the lasagna in a rectangular pan into servings. He makes \boldsymbol{x} equally spaced horizontal cuts and \boldsymbol{y} equally spaced vertical cuts.

Which expression represents the size of a serving as a part of the whole pan?
A. $\frac{1}{x y+1}$
B. $\frac{1}{x y+x+1}$
C. $\frac{1}{x y+x+y+1}$
D. $\frac{1}{x y+y+1}$
15. In a parallel circuit with two branches, the total resistance, T, can be determined by using this equation.

$$
\frac{1}{T}=\frac{1}{x}+\frac{1}{y}
$$

In the equation, x and y represent the resistance in each branch of the circuit.
Which expression represents the total resistance, T ?
A. $\frac{x+y}{2}$
B. $\frac{x+y}{x y}$
C. $\frac{x y}{2}$
D. $\frac{x y}{x+y}$

Answer Key

1. B) $f(n)=n^{2}+1$, for $n=1,2,3, \ldots$
2. C) $10 \sqrt{6} \mathrm{~cm}^{2}$
3. D) $15 x \sqrt{2}$
4. C) $12 \sqrt{2}$
5. A) $18+10 \sqrt{2}$
6. D) $\left(0.8 x^{2}-16 x\right)$ sq. in.
7. B) $10 x^{2}+42 x+24$
8. C) $6 x+4$
9. A) $3 x+2$
10. C) $\left(1000-300 d+30 d^{2}-d^{3}\right)$ cubic inches
11. C) $e^{3}-12 e^{2}+48 e-64 \mathrm{~cm}^{3}$
12. C) $\frac{(x-4)^{2}}{4 x}$
13. B) $\frac{3}{2 p}$
14. C) $\frac{1}{x y+x+y+1}$
15. D) $\frac{x y}{x+y}$
