Rational or Irrational
Determine if the number is rational (R) or irrational (I).

1) 61π
2) 42
3) $75.082 \overline{106}$
4) $\sqrt{101}$
5) $65.4 \overline{279}$
6) $20 / 6$
7) π
8) $5.62 \overline{13}$
9) $98 / 16$
10) 39
11) 89.396668

Verbal Expressions

15) the quotient of a number and 6
16) v squared
17) t more than 9
18) 3 cubed
19) the quotient of 24 and 8
20) the sum of 2 and 12
21) p cubed
22) the product of 5 and x
23) 2 to the 4 th
24) twice 11

Write each algebraic expression as a variable expression

1) $2 n$
2) $3 n+4$
3) n^{2}
4) $4(n-2)$

Simplifying Radical Expressions

Simplify.

1) $\sqrt{125 n}$
2) $\sqrt{216 v}$
3) $\sqrt{512 k^{2}}$
4) $\sqrt{512 m^{3}}$
5) $\sqrt{216 k^{4}}$
6) $\sqrt{100 v^{3}}$

Adding and Subtracting Radicals

17) $3 \sqrt{18}-2 \sqrt{2}$
18) $-3 \sqrt{18}+3 \sqrt{8}-\sqrt{24}$
19) $3 \sqrt{18}+3 \sqrt{12}+2 \sqrt{27}$
20) $-3 \sqrt{5}-\sqrt{6}-\sqrt{5}$
21) $-3 \sqrt{2}+3 \sqrt{20}-3 \sqrt{8}$
22) $-3 \sqrt{3}-\sqrt{8}-3 \sqrt{3}$

Multiplying Radicals

7) $\sqrt{15 n^{2}} \cdot \sqrt{10 n^{3}}$
8) $\sqrt{18 a^{2}} \cdot 4 \sqrt{3 a^{2}}$
9) $-3 \sqrt{7 r^{3}} \cdot 6 \sqrt{7 r^{2}}$
10) $-4 \sqrt{28 x} \cdot \sqrt{7 x^{3}}$
11) $\sqrt{3}(5+\sqrt{3})$
12) $2 \sqrt{5}(\sqrt{6}+2)$

Adding and Subtracting Polynomials

Simplify each expression.

1) $\left(5 p^{2}-3\right)+\left(2 p^{2}-3 p^{3}\right)$
2) $\left(a^{3}-2 a^{2}\right)-\left(3 a^{2}-4 a^{3}\right)$
3) $\left(3 a^{2}+1\right)-\left(4+2 a^{2}\right)$
4) $\left(4 r^{3}+3 r^{4}\right)-\left(r^{4}-5 r^{3}\right)$
5) $\left(-4 k^{4}+14+3 k^{2}\right)+\left(-3 k^{4}-14 k^{2}-8\right)$
6) $\left(3-6 n^{5}-8 n^{4}\right)-\left(-6 n^{4}-3 n-8 n^{5}\right)$

Multiplying Polynomials

15) $(6 n+3)(6 n-4)$
16) $(8 n+1)(6 n-3)$
17) $(6 k+5)(5 k+5)$
18) $(3 x-4)(4 x+3)$
19) $(4 a+2)\left(6 a^{2}-a+2\right)$
20) $(7 k-3)\left(k^{2}-2 k+7\right)$

Practice with Word Problems and Polynomials

1. A triangle has three sides with the following lengths: $2 x+1$ units, $3 x+5$ units, and $4 x-1$ units. Write a simplified algebraic expression for the perimeter of the triangle.
2. An octagon has sides that all have a length of y. Write a simplified algebraic expression for the perimeter of the octagon in terms of y.
3. A square has an unknown length and width. If its length is increased by 11 units to create a new, larger rectangle, write a simplified algebraic expression for the area of the new rectangle in terms of a if a represents the length of the original square.
4. The width of a rectangle is unknown. The length of the rectangle is two more units than its width. Write a simplified algebraic expression for the area of the rectangle in terms of width (w).
5. The formula for the area of a triangle is Area $=\frac{1}{2} \bullet$ base \bullet height. If the base of a triangle has a length of $8 x$ units, and the height is $x+6$ units, write a simplified algebraic expression for the area of the triangle in terms of x.

Miscellaneous

1. How many terms are in the simplified expression:

$$
35 x^{3}+10 x^{2}-3 x-17 x^{2}+2 x+129
$$

What is the degree of this expression?
What is the leading co-efficient of this polynomial?
2. Write the following as an algebraic expression.
a. X decreased by 10 plus y squared
b. X times 10 plus $\mathbf{2 y}$
c. 10 less than x cubed
d. 6 times the sum of n and 8
e. 6 times n increased by 8
3. Fill in the blank
a. One term is called a \qquad .
b. Two terms are called a \qquad .
c. Three terms are called a \qquad -
d. Many terms are called \qquad .

