Rational or Irrational

Determine if the number is rational (R) or irrational (I).

- 61π
- 2) 42
- **3)** 75.082106
- 4) $\sqrt{101}$
- **5)** 65.4279
- 6) 20/
- 7) π
- **8)** 5.6213
- 9) 98/16
- 10) 39
- 11) 89.396668..

Verbal Expressions

15) the quotient of a number and 6

16) v squared

17) t more than 9

18) 3 cubed

19) the quotient of 24 and 8

20) the sum of 2 and 12

21) p cubed

22) the product of 5 and x

23) 2 to the 4th

24) twice 11

Write each algebraic expression as a variable expression

1) 2n

3) 3n + 4

2) n²

4) 4 (n-2)

Simplifying Radical Expressions

Simplify.

1)
$$\sqrt{125n}$$

2)
$$\sqrt{216v}$$

3)
$$\sqrt{512k^2}$$

4)
$$\sqrt{512m^3}$$

5)
$$\sqrt{216k^4}$$

6)
$$\sqrt{100v^3}$$

Adding and Subtracting Radicals

17)
$$3\sqrt{18} - 2\sqrt{2}$$

18)
$$-3\sqrt{18} + 3\sqrt{8} - \sqrt{24}$$

19)
$$3\sqrt{18} + 3\sqrt{12} + 2\sqrt{27}$$

20)
$$-3\sqrt{5} - \sqrt{6} - \sqrt{5}$$

21)
$$-3\sqrt{2} + 3\sqrt{20} - 3\sqrt{8}$$

22)
$$-3\sqrt{3} - \sqrt{8} - 3\sqrt{3}$$

Multiplying Radicals

7)
$$\sqrt{15n^2} \cdot \sqrt{10n^3}$$

8)
$$\sqrt{18a^2} \cdot 4\sqrt{3a^2}$$

9)
$$-3\sqrt{7r^3} \cdot 6\sqrt{7r^2}$$

10)
$$-4\sqrt{28x} \cdot \sqrt{7x^3}$$

11)
$$\sqrt{3}(5+\sqrt{3})$$

12)
$$2\sqrt{5}(\sqrt{6}+2)$$

Adding and Subtracting Polynomials

Simplify each expression.

1)
$$(5p^2-3)+(2p^2-3p^3)$$

2)
$$(a^3 - 2a^2) - (3a^2 - 4a^3)$$

5)
$$(3a^2 + 1) - (4 + 2a^2)$$

6)
$$(4r^3 + 3r^4) - (r^4 - 5r^3)$$

9)
$$(-4k^4 + 14 + 3k^2) + (-3k^4 - 14k^2 - 8)$$

10)
$$(3-6n^5-8n^4)-(-6n^4-3n-8n^5)$$

Multiplying Polynomials

15)
$$(6n+3)(6n-4)$$

16)
$$(8n+1)(6n-3)$$

17)
$$(6k+5)(5k+5)$$

18)
$$(3x-4)(4x+3)$$

19)
$$(4a+2)(6a^2-a+2)$$

20)
$$(7k-3)(k^2-2k+7)$$

Practice with Word Problems and Polynomials

- 1. A triangle has three sides with the following lengths: 2x+1 units, 3x+5 units, and 4x-1 units. Write a simplified algebraic expression for the **perimeter** of the triangle.
- 2. An octagon has sides that all have a length of *y*. Write a simplified algebraic expression for the **perimeter** of the octagon in terms of *y*.
- 3. A square has an unknown length and width. If its length is increased by 11 units to create a new, larger rectangle, write a simplified algebraic expression for the <u>area</u> of the new rectangle in terms of a if a represents the length of the original square.
- 4. The width of a rectangle is unknown. The length of the rectangle is two more units than its width. Write a simplified algebraic expression for the <u>area</u> of the rectangle in terms of width (w).
- 5. The formula for the area of a triangle is $Area = \frac{1}{2} \bullet base \bullet height$. If the base of a triangle has a length of 8x units, and the height is x + 6 units, write a simplified algebraic expression for the <u>area</u> of the triangle in terms of x.

Miscellaneous

1. How many terms are in the simplified expression:

$$35x^3 + 10x^2 - 3x - 17x^2 + 2x + 129$$

What is the degree of this expression?

What is the leading co-efficient of this polynomial?

- 2. Write the following as an algebraic expression.
 - a. X decreased by 10 plus y squared
 - b. X times 10 plus 2 y
 - c. 10 less than x cubed
 - d. 6 times the sum of n and 8
 - e. 6 times n increased by 8
- 3. Fill in the blank
 - a. One term is called a ______.
 - b. Two terms are called a ______.
 - c. Three terms are called a ______.
 - d. Many terms are called ______.